There is no shortage of debate about the nature of dark matter, a mysterious substance that many believe makes up a large proportion of the total mass of the universe, in spite of never having observed it directly. Now some believe that Landauer’s principle, which dictates the physical nature of information, is raising a startling possibility: that dark matter might be information itself, writes Melvin Vopson.
One of the greatest curiosities of modern physics is the nature of the mysterious substance known as “dark matter”. It is widely accepted that the make up of the Universe is about 5% ordinary (baryonic) matter consists of baryons — an overarching name for subatomic particles such as protons, neutrons and electrons, 27% dark matter and, 68% of the universe is made of something even more puzzling called “dark energy”. Unlike normal matter, dark matter does not interact with the electromagnetic force. This means it does not absorb, reflect or emit light, making it extremely hard to spot.
SUGGESTED READING
Infinity: the question cosmology can't answer
By Peter Cameron
Dark matter was first suggested in 1920s to explain observed anomalies in stellar velocities, and later in the 1930s, when Fritz Zwicky, a Swiss astronomer noted a discrepancy between the mass of visible matter and the calculated mass of a galaxy cluster as well as a discrepancy between the motion of a cluster of galaxies was much too fast to be held by gravitational attraction of visible matter alone. The existence of this gravitational anomaly, Zwicky termed dunkle Materie - 'dark matter.' However, the strongest scientific argument for dark matter’s existence came in the 1970s with the work of the US astronomer Vera Rubin, who showed a consistent effect of spiral galaxies rotating too fast for the amount of visible matter present. Both Rubin and Zwicky had observed something adding to the force of gravity impacting these galaxies.
Join the conversation