Physicists have gathered evidence that space-time can behave like a fluid. Mathematical evidence, that is, but still evidence. If this relation isn’t a coincidence, then space-time – like a fluid – may have a substructure.
We shouldn’t speak of space and time as if the two were distant cousins. We have known at least since Einstein that space and time are inseparable, two hemispheres of the same cosmic brain, joined to a single entity: space-time. Einstein also taught us that space-time isn’t flat, like paper, but bent and wiggly, like a rubber sheet. Space-time curves around mass and energy and this gives rise to the effect we call gravity.
That’s what Einstein said. But turns out if you write down the equations for small wiggles in a medium – such as soundwaves in a fluid – then the equations look exactly like those of waves in a curved background.
Yes, that’s right. Sometimes, waves in fluids behave like waves in a curved space-time; they behave like waves in a gravitational field. Fluids, therefore, can be used to simulate gravity. And that’s some awesome news because this correspondence between fluids and gravity allows physicists to study situations that are otherwise experimentally inaccessible; for example, what happens near a black hole horizon or during the rapid expansion of the early universe.
This mathematical relation between fluids and gravity is known as “analog gravity.” That’s “analog” as in “analogy” not as opposed to digital. But it’s not just math. The first gravitational analogies have been created in a laboratory.
Join the conversation