Questioning cosmic inflation

Rewriting the origins of the universe

The cosmic inflation hypothesis is needed for the Big Bang model to work, but in its current form, it remains a mere hypothesis, unable to be falsified. A new proposal for how it could be put to the test could result in overthrowing the Big Bang model altogether, opening up new possibilities regarding the origins of the universe, argues Avi Loeb.


Scientific theories often require tweaking to fit the data, but sometimes when those tweaks are big enough, they end up becoming theories of their own. The biggest tweak to the Big Bang model has been the introduction of the cosmic inflation hypothesis. According to this theory, the universe went through a phase of exponential expansion soon after its coming into existence. The only problem is, we can’t seem to test this theory. In the language of philosopher of science Karl Popper, cosmic inflation doesn’t appear to be falsifiable. 

That might be about to change. In a recent paper, Sunny Vagnozzi and I propose a way of testing the cosmic inflation hypothesis. By developing detectors that search for the thermal gravitational wave background created 10-43 seconds after the Big Bang - the smallest possible fraction of time -  we could put the hypothesis to the test. Detection would mean the falsification of the cosmic inflation hypothesis and, by extension, a challenge of the Big Bang theory and a radical transformation of our understanding of the origins of the cosmos.

According to the standard cosmological model, there is a relic from the event of the Big Bang called cosmic microwave background, and it accounts for a percentage of the static noise visible as “snow” in old-fashioned, analogue TV sets. The photosphere that last scattered this radiation, 400,000 years after the Big Bang. This spherical surface that last scattered the radiation around us marks the boundary of the transparent volume of the observable universe. We cannot see any farther. To give you sense of how far back in time we’re talking about, the first stars formed about a hundred million years later.

The actual edge of the observable Universe is at the distance that any signal could have travelled at the speed of light over the 13.8 billion years that elapsed since the Big Bang. As a result of the expansion of the Universe, this edge is currently located 46.5 billion light years away. The spherical volume within this boundary is like an archaeological dig centered on us: the deeper we probe into it, the earlier the layer of cosmic history that we uncover, all the way back to the Big Bang, which represents our ultimate horizon. What lies beyond the horizon is unknown.

Within the thin spherical shell between the Big Bang and the microwave background photosphere, the universe was opaque to light. Despite that, we have a way of probing into this layer. Neutrinos have a weak cross-section for interactions, and so the universe was transparent to them back to approximately a second after the Big Bang, when the temperature was ten billion degrees. The present-day universe should be filled with relic neutrinos from that time. And because the expansion of the universe cooled the neutrino background to a present-time temperature of 1.95 degrees above absolute zero, comparable to the 2.73 degrees of the cosmic microwave background, we can differentiate between the two.


The large flexibility displayed by numerous possible inflationary models raises concerns that the inflationary paradigm as a whole is not falsifiable


Can we probe even deeper into our cosmic archaeological dig? In principle, yes. Gravitational radiation has an even weaker interaction than neutrinos. So much so that the universe was transparent to gravitons all the way back to the earliest instant traced by known physics, the Planck time: 10 to the power of -43 seconds, when the temperature was the highest conceivable: 10 to the power of 32 degrees. A proper understanding of the Planck epoch requires a predictive theory of quantum gravity, which we still haven’t developed. But if gravitational radiation was thermalized at the Planck time, shouldn’t there be a relic background of thermal gravitational radiation with a temperature of about one degree above absolute zero?

Not so, according to the popular theory of cosmic inflation, which suggests that the universe went through a subsequent phase of exponential expansion that diluted all earlier relics to undetectable levels. Inflation was theorized to explain various fine-tuning challenges of the Big Bang model. However, the large flexibility displayed by numerous possible inflationary models raises concerns that the inflationary paradigm as a whole is not falsifiable, even if individual models of it can be ruled out. Is it possible in principle to test the entire inflationary paradigm in a model-independent way?

In our new paper, Sunny Vagnozzi, then a postdoc at the University of Cambridge, and I showed that future detectors could potentially discover the one-degree gravitational wave background, if it exists. This cosmic graviton background adds to the cosmic radiation budget, which otherwise includes microwave and neutrino backgrounds. It therefore affects the cosmic expansion rate of the early universe at a level that might be detectable by the next generation of cosmological probes.


Sometimes, the most beautiful possibilities are ruled-out, even if they were conceived by the most brilliant scientists on planet Earth, like Albert Einstein


A discovery of the thermal graviton background holds the potential of ruling out the inflationary paradigm and bringing us back to the drawing board of how the Universe began. Given that the interiors of black holes are hidden from view and are risky to venture into, the early universe might represent our best opportunity for testing predictive theories of quantum gravity.

There is no reason to assume that our cosmic roots started at the Planck time. Albert Einstein was inclined to think that our past timeline should have no beginning. But to his dismay, he later realized that the equations of the General Theory of Relativity do not admit a stable static solution, and moreover - the actual universe appears to be expanding. His philosophical preference for no beginning might be validated by the ultimate theory to combine General Relativity with Quantum Mechanics, which could explain what predated the Big Bang.

A predictive theory of quantum gravity could rid us of the Big Bang singularity. But just as with the development of quantum mechanics, we might need guidance from experimental data or else we will have too many possible theoretical scenarios.

Here’s hoping that the new paper I wrote with Sunny will lead to progress by eliminating theoretical possibilities. Scientific knowledge encapsulates what actually exists in the cosmos out of the many possibilities that could have existed. Sometimes, the most beautiful possibilities are ruled-out, even if they were conceived by the most brilliant scientists on planet Earth, like Albert Einstein. As known from social media or politics, beauty and truth are not necessarily the same.

Latest Releases
Join the conversation

Bud Rapanault 11 February 2023

So a hypothetical and completely unobservable event, supporting a hypothetical and completely unobservable creation myth, might be falsified by the future detection of some hypothetical and completely
unobservable particles (gravitons) - hypothetically (of course)? Whatever that nonsense might be, there is no justification for calling it science. It's just an eruption of mathematicism running amok in the halls of academia where once upon a time people actually engaged in scientific inquiry.

No longer. Mathematicism, the ancient, delusional belief that some mathematical model underlies and determines the nature of physical reality has made an unscientific, illogical, and absurd mess of modern theoretical physics. The empirically baseless, not to mention physically absurd, not to mention logically inconsistent, Big Bang model is the misbegotten offspring of mathematicism. Science it ain't.

Mike Pollock 9 February 2023

Of course, the Big Bang is falsifiable. If time doesn't exist, what does? It's falsifiable because the notion completely ignores the first law of thermodynamics. The universe expands with no explanation ignoring Newton's third law. The universe was "created" hot with no explanation breaking the second law. It is the most falsifiable assumption that could exist.

Avi questions the big bang theory but then describes what happened as if it is a fact. Which direction do we look out to see where the Big Bang happened? Every direction? Wouldn't that make the Earth the center of the universe? As if the Big Bang happened right here? Wouldn't that be a geocentric model like the Earth being the center of the universe?

There is only one process our universe possesses to make matter expand and contain heat and that is a collision. The "unfalsifiable" explanation to what could have happened 13.8 billion years ago is that our universe had two, maximum entropy objects floating in space that contained the mass of the observable galaxies and they weren't the only ones. They happened to collide at an extreme speed and create quark plasma shrapnel just like every test in a particle collider does. The result is the expanding galaxies that were all created instantaneously with all the energy they would ever have. This theory is unfalsifiable because it actually could have happened. Collisions have destroyed life on Earth but they also created it by taking maximum entropy, lifeless matter like our Moon and transformed it into minimum entropy quark plasma that had the chance to start life with entropy.

If someone wants to redefine the inflationary model, they have to do it by eradicating everything about the Big Bang theory. Nobody seems to want, or be able, to do that. Breaking all the laws of physics seems to be unfalsifiable with the Big Bang.

Edwin Hubble discovered the galaxies expanding in an already existing, static universe. He did not discover the universe expanding and that's what many scientists including him tried to convey. Somehow, they were completely ignored over father Georges Lamaîtres interpretation. Now, why did that happen? It's the most important question in all of physics and astrophysics.