Changing How the World Thinks

An online magazine of big ideas

Why the foundations of physics have not progressed for 40 years

Physicists face stagnation if they continue to treat the philosophy of science as a joke

Why Phsyics has made no progress in 50 years

In the foundations of physics, we have not seen progress since the mid 1970s when the standard model of particle physics was completed. Ever since then, the theories we use to describe observations have remained unchanged. Sure, some aspects of these theories have only been experimentally confirmed later. The last to-be-confirmed particle was the Higgs-boson, predicted in the 1960s, measured in 2012. But all shortcomings of these theories – the lacking quantization of gravity, dark matter, the quantum measurement problem, and more – have been known for more than 80 years. And they are as unsolved today as they were then.

The major cause of this stagnation is that physics has changed, but physicists have not changed their methods. As physics has progressed, the foundations have become increasingly harder to probe by experiment. Technological advances have not kept size and expenses manageable. This is why, in physics today, we have collaborations of thousands of people operating machines that cost billions of dollars.

With fewer experiments, serendipitous discoveries become increasingly unlikely. And lacking those discoveries, the technological progress that would be needed to keep experiments economically viable never materializes. It’s a vicious cycle: Costly experiments result in lack of progress. Lack of progress increases the costs of further experiment. This cycle must eventually lead into a dead end when experiments become simply too expensive to remain affordable. A $40 billion particle collider is such a dead end.

The only way to avoid being sucked into this vicious cycle is to choose carefully which hypothesis to put to the test. But physicists still operate by the “just look” idea like this was the 19th century. They do not think about which hypotheses are promising because their education has not taught them to do so. Such self-reflection would require knowledge of the philosophy and sociology of science, and those are subjects physicists merely make dismissive jokes about. They believe they are too intelligent to have to think about what they are doing.

The consequence has been that experiments in the foundations of physics past the 1970s have only confirmed the already existing theories. None found evidence of anything beyond what we already know.

But theoretical physicists did not learn the lesson and still ignore the philosophy and sociology of science. I encounter this dismissive behavior personally pretty much every time I try to explain to a cosmologist or particle physicists that we need smarter ways to share information and make decisions in large, like-minded communities. If they react at all, they are insulted if I point out that social reinforcement – aka group-think – befalls us all, unless we actively take measures to prevent it.

Instead of examining the way that they propose hypotheses and revising their methods, theoretical physicists have developed a habit of putting forward entirely baseless speculations. Over and over again I have heard them justifying their mindless production of mathematical fiction as “healthy speculation” – entirely ignoring that this type of speculation has demonstrably not worked for decades and continues to not work. There is nothing healthy about this. It’s sick science. And, embarrassingly enough, that’s plain to see for everyone who does not work in the field.

This behavior is based on the hopelessly naïve, not to mention ill-informed, belief that science always progresses somehow, and that sooner or later certainly someone will stumble over something interesting. But even if that happened – even if someone found a piece of the puzzle – at this point we wouldn’t notice, because today any drop of genuine theoretical progress would drown in an ocean of “healthy speculation”.

And so, what we have here in the foundation of physics is a plain failure of the scientific method. All these wrong predictions should have taught physicists that just because they can write down equations for something does not mean this math is a scientifically promising hypothesis. String theory, supersymmetry, multiverses. There’s math for it, alright. Pretty math, even. But that doesn’t mean this math describes reality.

Physicists need new methods. Better methods. Methods that are appropriate to the present century.

And please spare me the complaints that I supposedly do not have anything better to suggest, because that is a false accusation. I have said many times that looking at the history of physics teaches us that resolving inconsistencies has been a reliable path to breakthroughs, so that’s what we should focus on. I may be on the wrong track with this, of course. But for all I can tell at this moment in history I am the only physicist who has at least come up with an idea for what to do.

Why don’t physicists have a hard look at their history and learn from their failure? Because the existing scientific system does not encourage learning. Physicists today can happily make career by writing papers about things no one has ever observed, and never will observe. This continues to go on because there is nothing and no one that can stop it.

You may want to put this down as a minor worry because – $40 billion dollar collider aside – who really cares about the foundations of physics? Maybe all these string theorists have been wasting tax-money for decades, alright, but in the large scheme of things it’s not all that much money. I grant you that much. Theorists are not expensive.

But even if you don’t care what’s up with strings and multiverses, you should worry about what is happening here. The foundations of physics are the canary in the coal mine. It’s an old discipline and the first to run into this problem. But the same problem will sooner or later surface in other disciplines if experiments become increasingly expensive and recruit large fractions of the scientific community.

Indeed, we see this beginning to happen in medicine and in ecology, too.

Small-scale drug trials have pretty much run their course. These are good only to find in-your-face correlations that are universal across most people. Medicine, therefore, will increasingly have to rely on data collected from large groups over long periods of time to find increasingly personalized diagnoses and prescriptions. The studies which are necessary for this are extremely costly. They must be chosen carefully for not many of them can be made. The study of ecosystems faces a similar challenge, where small, isolated investigations are about to reach their limits.

How physicists handle their crisis will give an example to other disciplines. So watch this space.

 

If you want to hear from leading thinkers like this debating renowned philosophers, cutting edge scientists, headline-making politicians, and beloved artists, come to HowTheLightGetsIn Hay 2020 for four days of debates and talks alongside music, comedy and parties.

Latest Releases
Join the conversation

Sign in to post comments or join now (only takes a moment). Don't have an account? Sign in with Facebook, Twitter or Google to get started:

Bing Laher 15 January 2020

This is written like someone who has absolutely no knowledge of how experimental physics works nowadays. I'm assuming that the author isn't as ignorant on the subject matter as that, and this is just a very manipulative way to spread (while not exactly outright lies) misinformation about *how everyone else is wrong*. I'm sorry, but until I see some due diligence, I'll give the argument here no weight. Or more accurately, I'll give it the weight it deserves: mediocre troll, kinda boring. I'm sad my view gave you money for this trash meant to elicit reactionary, knee-jerk reactions.

Nicole Tedesco 15 January 2020

I cannot agree with the author. The basic epistemological principles of science are very much intact, thank you. In the end, perhaps I am simply confused over what the author means by "philosphy".

The author, Dr. Sabine Hossenfelder, whic is a research fellow at the Frankfurt Institute for Advanced Studies, argues that somehow the both philosophy and sociology of science are broken in some way. Experiments in physics are becoming increasingly expensive with little return, and that is a fair complaint. However, this does not mean basic scientific epistemology is at risk? Perhaps she is not proposing it is, but the article is written in such as way as to be just vague enough to imply this conclusion.

Dr. Hossenfelder suggests that "pretty math" is not reality, but merely models reality. This is a fair observation. The modeling of reality by math can result in a great deal of idle speculation. I agree with that. History is full of this kind of idle speculation which can become ever more idle and more speculative when data is scarce or even non-existent. Without data nothing stands to counter empty speculation. In the end this problem--as it always has--calls for more data to match the mathematical speculations and eliminate those that simply do not work. This is how science works when it is successful. I am not sure if Dr. Hossenfelder is suggesting anything different other than to urge increased caution with experimental choice. This, however, does not imply fundamental problems with the philosophy of science. There may be sociological problems, political problems in particular, but not problems of basic epistemology. Of course, this begs the question as to what Dr. Hossenfelder means by "philosophy". Does she mean, as I have speculated, epistemology, or perhaps ethics, morality, metaphysics, logic, or aesthetics? Perhaps this is where I find myself confused. I should be confused, because Dr. Hossenfelder has not defined "philosphy" enough for this article to make sense enough to interpret it properly.

As Thomas Kuhn pointed out decades ago, what generally needs to change is the worldview, or paradigm in which all models and data are conceptualized within. This is a cognitive problem, more in line with Piaget than with Karl Popper for instance. Language will expand to embody completely new concepts that only make sense in the new worldview. Meanwhile, as we see in engineering worldviews, dimishing returns are to be had as one continually improves upon existing technologies to the point of maximum optimization. The top of the innovation S-curve yields decreasing improvements for the money spent. This only stops when a new revolution takes place in the innovation cycle. Pocket and wrist watches became thinner, increasingly feature laden over time. At some point the market became saturated as no new features for pocket or wrist watches made sense in the worldview of pocket or wrist watches of the era. One day came the smartphone and everything changed. Science is no different. I am not sure Dr. Hossenfelder understands this.

Sok Puppette 15 January 2020

OK, maybe I'm missing something, but doesn't saying "I am the only physicist who has at least come up with an idea for what to do" kind of beg the question of exactly what that idea may be? If you're not going to explain it here, shouldn't you at least point us to where you DO explain it? As it stands, this rant seems to be a content-free waste of time. If you don't want to be accused of having no suggestions, you need to say what your suggestions are.

I sure hope you don't think "resolving inconsistencies" counts, because that is a pointless prescription unless you can say how to do it.

Do you propose some specific experiment? What is it? Do you have a particular "scientifically promising hypothesis"? What is it? Do you have some succinct, useful criterion for distinguishing promising from unpromising hypotheses, or some specific course of action that could be expected to generating promising hypotheses? What are those, and why are they good? Can you describe how, specifically, to apply the "philosophy and sociology of science" to get anywhere closer to any of those things?

If you want to talk about unproductive paths, people have been working on "smarter ways to share information and make decisions in large, like-minded communities" thousands of years of which we have records, and probably hundreds of thousands of which we do not. There's been very little meaningful progress over the centuries... but there have been innumerable highflown unsupported theories and not a few expensive experiments. Do you believe that that sort of project always progresses somehow? 'Cuz there's lots of evidence that it does NOT.

John Wilson 14 January 2020

I totally agree that many physicists have lost their way. I experienced this effect myself in grad school physics at Georgia Tech. There were the core classes that taught solid physics, based on actual experimental results and real science. Then there were the speculative classes. Like many others at the time, I was drawn to some of the more "mystical" aspects of QM since it was not well understood. The big push of course was to "Quantize Gravity". It has been years since that time, and I have watched the flow of events as everyone still states that "General Relativity and Quantum Mechanics are not compatible." This is incorrect, and it is the basis of the mistake that has caused the stagnation of physics for decades.

General Relativity (GR) has passed every test that has been made on it. There are no violations of Lorentz Invariance. Special Relativity (SR) is simply the approximate limiting-case of GR for when masses are small (i.e. low curvature = "flat" spacetime). Now here is the part that has been missed. One can derive Relativisitic Quantum Mechanics (RQM) from principles of Special Relativity and just a few empirical observations. Standard Quantum Mechanics (QM) is just the low-velocity ( |v| << c ) limiting-case of RQM. That means that QM is *not* fundamental. No one will be "quantizing gravity" because it doesn't work that way. GR --> SR --> RQM --> QM --> CM. That is the path from General Relativity to everyday Classical Mechanics (CM).

http://scirealm.org/SRQM.pdf

Here is the tensor mathematics (well-examined and known to describe correct physics, based on actually experimental physics) and the pieces of the puzzle that can lead physics out of the hole that Sabine mentions. Just because the quantum pieces are little doesn't mean that you build everything else out of them. GR gives the general rules for how one "measures" things.

John Wilson

Uncle Al 14 January 2020

Physics' empirically sterile 50 years may be a demonstrable wavefunction conceptual defect. Matter wave interference[1] is QM’s beating heart, including 25,000 Da molecules[2]. Schrödinger's box superposition of states applied to slit grating input of optically resolved chiral molecules: (±x,±y,±z) + (∓x,∓y,∓z) = zero, or [ket(left-handed)] + ket(right-handed)]/[sqrt(2)] = zero must output observable 1:1 mixture of hands, a racemate, Hund's paradox. Input[3] a robust single enantiomer molecular beam[4], racemization energy greater than 1414 kJ/mol. Examine the output enantiomer ratio[5]. No diffraction pattern emerges (one may not "shut up and calculate), a racemate emerges (classical thermodynamics is shattered), or the universe uncreates. Any of the three is better than what physics has now. In QFT veritas, in Pyrex sanitas. Look.

[1] DOI:10.1002/prop.201600025; DOI:10.1038/nnano.2015.179, arXiv:1602.07578
[2] DOI:10.1038/s41567-019-0663-9, DOI:10.1039/c3cp51500a, arXiv:1703.02129
[3] DOI:10.1002/anie.201704221
[4] 2-trifluoromethyl-D_3-trishomocubane, MW = 214 Da
[5] http://brightspec.com/wp-content/uploads/2015/06/ProductFlier-Chirality-Nov2014-Press.pdf

D Gillies 13 January 2020

I was quite shocked to notice that so many of the big efforts in science in the 2010s were to confirm things that were already known (gravity waves, higgs boson, etc.). Unfortunate, since that is a very low-impact pursuit ...

David Samson 13 January 2020

The primary limitation in any of the sciences is that any meaningful hypothesis is limited by our ability to make measurements. If you can't put a "ruler" next to it, any comments you make amount to little more than conjecture. The issues regarding "dark matter" & "dark energy" highlight this limitation. We can measure a gravitational effect but otherwise, we have no way of interacting with the ~93% of the universe that falls under this rubric. There's probably some good science to be found in that portion of the universe but if we can't make decent measurements, we aren't doing science.

Владимир Хомяков 13 January 2020

S.V. Siparov. Metric dynamics.

arXiv:1506.03304v1 General Physics (physics.gen-ph) [v1] Fri, 17 Apr 2015

https://arxiv.org/abs/1506.03304

The suggested approach makes it possible to produce a consistent description of motions of a physical system. It is shown that the concept of force fields defining the systems’ dynamics is equivalent to the choice of the corresponding metric of an anisotropic space, which is used for the modeling of physical reality and the processes that take place. The examples from hydrodynamics, electrodynamics, quantum mechanics and theory of gravitation are discussed. This approach makes it possible to get rid of some known paradoxes; it can be also used for the further development of the theory.

https://arxiv.org/ftp/arxiv/papers/1506/1506.03304.pdf