Brain noise doesn't explain consciousness

A psychedelic experience isn’t akin to TV static

The foremost physiological effect of psychedelics in the brain is to significantly reduce activity in multiple brain areas, which contradicts the mainstream reductionist expectation. Physicalist neuroscientists have proposed that an increase in brain noise explains the subjective richness of a psychedelic experience, but a psychedelic experience isn’t akin to TV static, argues Bernardo Kastrup.

 

Before 2012, the generally accepted wisdom in neuroscience was that psychedelic substances—which lead to unfathomably rich experiential states—stimulate neuronal activity and light up the brain like a Christmas tree. Modern neuroimaging, however, now shows that they do precisely the opposite: the foremost physiological effect of psychedelics in the brain is to significantly reduce activity in multiple brain areas, while increasing it nowhere in the brain beyond measurement error. This has been consistently demonstrated for multiple psychedelic substances (psilocybin, LSD, DMT), with the use of multiple neuroimaging technologies (EEG, MEG, fMRI), and by a variety of different research groups (in Switzerland, Brazil, the United Kingdom, etc.). Neuroscientist Prof. Edward F. Kelly and I published an essay on Scientific American providing an overview of, and references to, many of these studies.

Continue reading

Enjoy unlimited access to the world's leading thinkers.

Start by exploring our subscription options or joining our mailing list today.

Start Free Trial

Already a subscriber? Log in

Join the conversation